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In this paper, the multi-domain method of subdividing the membranes of interest into
several domains is presented for applications of free vibration analysis of arbitrarily shaped
membranes. The method is especially e!ective for concavely shaped membranes with high
concavity and multi-connected membranes with a hole, compared with the single-domain
method. The frequency equations of these membranes are given by the determinants of the
system matrices obtained when the compatibility conditions are considered on the common
boundaries along which the sub-domains adjoin each other. Although many boundary
nodes are distributed along the "xed boundaries on which transverse displacements are
prescribed to be zero, the number of boundary nodes has no e!ect on the order of the system
matrix. The order is determined to be equal to the value corresponding to twice the number
of interior nodes distributed on the common boundaries. Thus, eigenvalues, the roots of the
frequency equation, may be obtained from the determinant of the system matrix of a small
order. The case studies presented in the paper reveal that the eigenvalues calculated by this
method are in good agreement with those obtained by the FEM program, ANSYS.
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1. INTRODUCTION

In a previous paper [1], the authors proposed a practical method using the non-
dimensional dynamic in#uence function for free vibration analysis of arbitrarily shaped
membranes. The method is remarkable in that it is very simple because no interpolation
function is used between nodes, unlike the "nite element method [2] and the boundary
element method [3, 4]. Since the method uses no interpolation function, it employs the
collocation technique or point-matching method [5, 6] when a given boundary condition is
considered at the edges of the membrane of interest. However, it is revealed in the present
work that the method does not give good solutions for concavely shaped membranes with
high concavity, and that the method may not be essentially extended immediately to
multi-connected membranes with holes.

This paper introduces the multi-domain method of subdividing the total domain of a
membrane into sub-domains. In this method, system matrix equations for each of the
sub-domains are constructed according to the single-domain method that was developed in
the previous research [1]. The relationship between the equations is given by considering
the compatibility conditions on common boundaries between the sub-domains. Finally, a
frequency equation governing the total domain is obtained from the determinant of a new
system matrix of a small order. Cortinez and Laura [7] studied the free vibration of
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456 S. W. KANG AND J. M. LEE
a non-homogeneous rectangular membrane by applying the compatibility conditions to the
boundary between two rectangular sub-domains, in the same manner as in the present
work. However, applications of his study are limited to membranes with exact solutions,
such as rectangular or circular membranes. Irie et al. [8] calculated the natural frequencies
of concavely shaped polygonal membranes by using series-type solutions, but this method
has the limitation that it is applicable only to polygonal membranes. Although many
engineering applications have dealt with the vibration problems of membranes, a survey of
the literature performed by the authors reveals that no paper associated with the topic of
this paper has been published. Moreover, no papers have been presented for arbitrarily
shaped membranes with holes.

In general, the Bessel functions of the "rst and second kinds of order n, J
n

and Y
n
, are

required to solve free vibrations of membranes with a hole. However, the proposed method
enables us to calculate the eigenvalue of the membranes with only the Bessel function of the
"rst kind and order zero, J

0
. Although the method uses a very small number of boundary

nodes, compared with that used in the FEM, it gives accurate eigenvalues owing to its
simplicity in that no interpolation function is used between nodes.

2. THE SINGLE-DOMAIN METHOD REVIEWED

2.1. NON-DIMENSIONAL DYNAMIC INFLUENCE FUNCTION

The non-dimensional dynamic in-uence function (NDIF) primarily satis"es the governing
equation of the eigen"eld of interest, and physically describes the displacement response
of a point in an in"nite domain due to a unit displacement excited at another point [1]. In
the case of an in"nite membrane (see Figure 1), the NDIF between the excitation point
P and the response point P

k
is given by

NDIF"J
0
(K Dr!r

k
D), (1)
Figure 1. In"nite membrane with harmonic excitation points that are distributed along the "ctitious contour
with the same shape as the "nite-sized membrane of interest.
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APPLICATION OF FREE VIBRATION ANALYSIS OF MEMBRANES 457
which satis"es the Helmholtz equation

+2=#K2="0, (2)

where=(r) is the transverse displacement of a "nite-sized membrane, K"u/J¹/o denotes
the wavenumber expressed in terms of the angular frequency u, the uniform tension per unit
length ¹, and the mass per unit area o. Detailed illustrations on the NDIF have been given
in the previous paper [1].

2.2. SYSTEM EQUATION OF A SINGLE EIGENFIELD

For free vibration analysis of an arbitrarily shaped membrane, the boundary of which is
illustrated by the dotted line in Figure 1, N nodes are "rst distributed along the boundary
depicted in an in"nite membrane. Assuming that harmonic displacements of amplitudes A

1
,

A
2
,2, A

N
are, respectively, generated at points P

1
, P

2
,2,P

N
, the total displacement

response at the point P may be obtained by the sum of responses that have resulted from
each boundary point, i.e.,

=(r)"
N
+
k/1

A
k
J
0
(K Dr!r

k
D), (3)

which is employed as an approximate solution for the eigen"eld of the "nite-sized
membrane. Note that the approximate solution also satis"es the Helmholtz equation.

Applying a boundary condition, which is prescribed continuously along the boundary, to
the approximate solution is based on the collocation technique. Thus, the continuous
boundary condition is discretized at the boundary points, i.e., as a discrete boundary
condition, displacements at points P

1
, P

2
,2,P

N
are given by ;

1
, ;

2
,2,;

N
respectively.

Then, the newly constructed discrete boundary condition

=(r
i
)";

i
, i"1, 2,2,N (4)

is applied to the approximate solution, equation (3):

=(r
i
)"

N
+
k/1

A
k
J
0
(K Dr

i
!r

k
D)";

i
, i"1, 2,2, N, (5)

which may be written in a simple matrix form as

SM (K)A"U, (6)

where the N]N symmetric system matrix SM (K) is given by SM
ik
"J

0
(K Dr

i
!r

k
D), the

participation vector A represents the participation strength of the NDIF's de"ned at each
boundary point, and the displacement vector U represents the discrete boundary condition.
Equation (6) is termed the system matrix equation obtained by using the single-domain
method for which the membrane of interest is not subdivided. In the case of U"0 ("xed
boundary condition), eigenvalues can be found from the fact that det[SM (K)]"0.
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458 S. W. KANG AND J. M. LEE
3. MULTI-DOMAIN METHOD

When the single-domain method is applied to concave or multi-connected membranes of
complex shapes, too many boundary points may be required to well depict the shapes. In
this case, the order of the system matrix becomes very large, so that it may be di$cult to
calculate the determinant of the system matrix owing to numerical errors. Thus, the
multi-domain method of dividing the membrane of interest into several domains is
presented to reduce the order of the system matrix.

3.1. TWO-DOMAIN METHOD: MEMBRANE WITH HIGH CONCAVITY

As shown in Figure 2, a concave membrane, illustrated as the solid line, is divided into
the two domains, D

I
and D

II
, which are surrounded by boundaries C

1
#C

a
and C

2
#CI

a
respectively. Note that CI

a
is at the same position as C

a
. When the single-domain method is

applied to each domain, the two system matrix equations

SM
I
A

I
"U

I
, SM

II
A

II
"U

II
(7, 8)

are obtained. Equations (7, 8) may be, respectively, written in another form:

C
SM

11
SM

a1

SM
1a

SM
aa
DG

A
1

A
a
H"G

U
1

U
a
H, C

SM
22

SM
a2

SM
2a

SM
aa
DG

A
2

A3
a
H"G

U
2

U3
a
H (9, 10)

or

SM
11

A
1
#SM

1a
A

a
"U

1
, SM

a1
A

1
#SM

aa
A

a
"U

a
, (11, 12)

SM
22

A
2
#SM

2a
A

a
"U

2
, SM

a2
A

2
#SM

aa
A3

a
"U3

a
, (13, 14)
Figure 2. Concavely shaped membrane subdivided into two domains D
I
and D

II
, surrounded, respectively, by

the "xed and common boundaries, C
1
#C

a
and C

2
#CI

a
.
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APPLICATION OF FREE VIBRATION ANALYSIS OF MEMBRANES 459
where the vectors U
1

and U
2

are given from a discrete boundary condition prescribed
along the boundaries C

1
and C

2
that surround the total domain of the concave membrane,

U
a

and U3
a

represent unknown displacement vectors described at the nodes on C
a

or CI
a

corresponding to the common boundary of D
I

and D
II
, respectively; the participation

vectors A
1
and A

2
indicate the participation strengths of NDIF's de"ned at the nodes on C

1
and C

2
respectively; A

a
and A3

a
represent the participation strengths of NDIF's de"ned at

the nodes on C
a

and CI
a
respectively.

For the "xed boundary condition, i.e., U
1
"U

2
"0, from equations (11, 13), the

participation vectors A
1

and A
2

are, respectively, related to A
a
and A3

a
by

A
1
"!SM~1

11
SM

1a
A

a
, A

2
"!SM~1

22
SM

2a
A3

a
, (15, 16)

which are, respectively, substituted into equations (12, 14). Then, the compatibility
conditions on the common boundary C

a
are utilized, i.e.,

U
a
"U3

a
, LU

a
/Ln"LU3

a
/Ln, (17, 18)

where n denotes the normal direction from the common boundary. The substitution of
equations (12, 14) into equations (17, 18) leads to

SM(K)A"0, (19)

where the system matrix SM (K) and the participation vector A are given by

SM"C
SM

aa
!SM

a1
SM~1

11
SM

1a
SM@

aa
!SM@

a1
SM~1

11
SM

1a

SM
a2

SM~1
22

SM
2a
!SM

aa
SM@

a2
SM~1

22
SM

2a
!SM@

aa
D, A"G

A
a

A3
a
H (20, 21)

and SM@
( )

represents LSM
( )
/Ln. Finally, eigenvalues can be found by setting the determinant

of the system matrix equal to zero, i.e., det[SM(K)]"0.

3.2. THREE-DOMAIN METHOD: MEMBRANE WITH A HOLE

In order to solve a "xed membrane with a hole, the membrane is subdivided into several
domains as shown in Figure 3, in which the three sub-domains D

I
, D

II
and D

III
are

surrounded by boundaries C
1
#CI

a
#C

b
, C

2
#CI

b
#C

c
and C

3
#CI

c
#C

a
respectively. If

the single-domain method is applied to each of the domains, three system matrix equations
are obtained as

SM
I
A

I
"U

I
, SM

II
A

II
"U

II
, SM

III
A

III
"U

III
, (22}24)

which may be, respectively, rewritten as

SM
11

SM
1a

SM
1b

SM
a1

SM
aa

SM
ab

SM
b1

SM
ba

SM
bb
G
A

1
A3

a
A

b
H"G

U
1

U3
a

U3
b
H , (25)
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Figure 3. Multi-connected membrane subdivided into three domains D
I
, D

II
and D

III
, surrounded, respectively,

by the "xed and common boundaries, C
1
#CI

a
#C

b
, C

2
#CI

b
#C

c
and C

3
#CI

c
#C

a
.
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SM
22

SM
2b

SM
2c

SM
b2

SM
bb

SM
bc

SM
c2

SM
cb

SM
cc
G
A

2
A3

b
A

c
H"G

U
2

U3
b

U3
c
H , (26)

SM
33

SM
3c

SM
3a

SM
c3

SM
cc

SM
ca

SM
a3

SM
ac

SM
aa
G
A

3
A3

c
A

a
H"G

U
3

U3
c

U3
a
H , (27)

where U
1
"U

2
"U

3
"0 in the case of membranes with "xed edges.

From the "rst equation of the three equations that can be obtained from equation (25),
the vector A

1
may be expressed in terms of A3

a
and A

b
:

A
1
"!SM~1

11
SM

1a
A3

a
!SM~1

11
SM

1b
A

b
. (28)

Similarly, from equations (26, 27),

A
2
"!SM~1

22
SM

2b
A3

b
!SM~1

22
SM

2c
A

c
, (29)

A
3
"!SM~1

33
SM

3c
A3

c
!SM~1

33
SM

3a
A

a
(30)

Equations (28}30) are substituted into the remaining six equations that are not yet used in
equations (25}27). Then, from the six equations, the six displacement vectors U

a
, U3

a
, U

b
,

U3
b
, U

c
and U3

c
may be expressed in terms of the six participation vectors A

a
, A3

a
, A

b
, A3

b
, A

c
and A3

c
except A

1
, A

2
and A

3
. Furthermore, the six slope vectors U@

a
, U3 @

a
, U@

b
, U3 @

b
, U@

c
and U3 @

c
may be obtained by di!erentiating the six displacement vectors with respect to the normal
directions of the common boundaries.
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Next, the compatibility conditions on the common boundaries

U
a
"U3

a
, U@

a
"U3 @

a
, (31, 32)

U
b
"U3

b
, U@

b
"U3 @

b
, (33, 34)

U
c
"U3

c
, U@

c
"U3 @

c
, (35, 36)

are applied to the six displacement vectors and the six slope vectors. Then, the above
equations (31}36) are written in matrix form:

SM(K)A"0, (37)

where the system matrix SM(K) and the participation vectors A are given in Appendix A.
Note that the order of the system matrix is determined as 2(N

a
#N

b
#N

c
) where N

a
, N

b
and N

c
denote the numbers of the boundary points distributed along the corresponding

common boundaries. In the same manner as in the two-domain method, the eigenvalues
can be found from det[SM(K)]"0.

4. CASE STUDIES

In this section, several case studies are presented to verify the validity of the proposed
method. For each case, the eigenvalues obtained are compared with those computed by
exact analysis or FEM. The case studies show that the method is very e!ective when it is
used for concavely shaped membranes with high concavity or multi-connected membranes
with a hole.

4.1. RECTANGULAR MEMBRANE

First, the present method is applied to a rectangular membrane whose dimensions are
1)2 m]0)9 m (see Figure 4). For the discretization of the membrane, 27 nodes are
distributed along the "xed boundary and the common boundary, for which three interior
Figure 4. Rectangular membrane discretized with 27 nodes (24 boundary nodes and three interior nodes): only
the boundary nodes are used for the single-domain method.
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Figure 5. Determinant of the system matrix versus wavenumber for the rectangular membrane when the single-
and two-domain methods are used. **, two domains; - - - - - , single domain.

TABLE 1

Comparison of eigenvalues of the rectangular membrane obtained by the single-domain method,
the two-domain method and FEM

Single Two FEM
domain domains

Exact 1089 289 49Eigenvalues 24 nodes 27 nodes
solution nodes nodes nodes

K
1

4)3633 4)3633 4)3633 4)3651 4)3703 4)4133
K

2
6)2929 6)2929 6)2929 6)3006 6)3240 6)5166

K
3

7)4560 7)4560 7)4560 7)4669 7)4996 7)7682
K

4
8)5948 8)5945 8)5947 8)6213 8)7013 9)1287

K
5

8)7266 8)7266 8)7266 8)7407 8)7828 9)3523
K

6
10)5083 10)5135 10)5083 10)5370 10)6234 11)3284

K
7

10)7943 10)7871 10)7943 10)8313 10)9428 11)8467
K

8
11)0389 11)0385 11)0384 11)1029 11)2974 12)7802
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nodes are used. This membrane is solved by means of the single- and two-domain methods.
In the case of the two-domain method, the system matrix SM

I
for D

I
is made by using the 16

nodes located at the positions P (I)
1
&P (I)

13
and P (a)

1
&P (a)

3
. The other system matrix SM

II
is

made in the same manner as for SM
I
, i.e., the 16 nodes located at the positions P (II)

1
&P (II)

13and P (a)
1
&P (a)

3
are used. Note that the two points P (I)

1
and P (I)

1
or P (I)

13
and P(I)

13
are located at

the same position.
The eigenvalues obtained by the two-domain method are represented by the values of the

wavenumber K corresponding to the troughs in the logarithm curves shown in Figure 5.
When the single-domain method is used, the eigenvalues are given by the previous study
[1]. Those eigenvalues are summarized in Table 1 where the exact eigenvalues and the
JSV 20002872



Figure 6. Concavely shaped membrane discretized with 30 nodes (28 boundary nodes and two interior nodes).

Figure 7. Determinant of the system matrix versus wavenumber for the concavely shaped membrane when the
two-domain method is used.
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eigenvalue computed by FEM (ANSYS) are also presented. It may be said that the two-
domain method as well as the single-domain method gives very accurate eigenvalues. The
"rst four eigenvalues obtained by the proposed method converge to the exact solution, and
the other eigenvalues also converge nearly to the exact eigenvalues. It may be said that,
if the eigenvalues obtained are compared with the eigenvalues obtained by FEM, the
method guarantees rapid convergence in spite of the small number of boundary nodes. Note
JSV 20002872



TABLE 2

Comparison of eigenvalues of the concavely shaped membrane obtained by the two-domain
method and FEM

FEM
Present

Eigenvalues 30 nodes 1701 nodes 976 nodes 451 nodes

K
1

5)79 5)71 5)72 5)74
K

2
6)42 6)42 6)43 6)44

K
3

8)15 8)17 8)18 8)21
K

4
8)88 8)89 8)90 8)92

K
5

9)92 9)87 9)89 9)94
K

6
11)25 11)31 11)34 11)43

K
7

11)55 11)46 11)48 11)56
K

8
11)81 11)84 11)86 11)92
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that the 1089 nodes used in the FEM are su$cient to o!er the "rst eight eigenvalues
converged.

4.2. CONCAVE MEMBRANE WITH HIGH CONCAVITY

In order to obtain the eigenvalues of a concavely shaped membrane with high concavity,
the two-domain method is applied to a rectangular membrane with a partially concave
region, as shown in Figure 6. The common boundary illustrated by the dotted line is
discretized with two interior nodes and the "xed boundary is discretized with 28 nodes
respectively. Consequently, 30 nodes are used for the discretization of the membrane.
Figure 7 shows the determinant curve where the values of the wavenumber corresponding
to troughs represent the eigenvalues, summarized in Table 2. It may be said that the "rst
eight eigenvalues obtained by the two-domain method are accurate compared with those
obtained by FEM.

On the other hand, the single-domain method is also applied to the same membrane. For
this purpose, the boundary of the membrane is discretized with 20, 24 and 28 nodes (see
Figure 8). The determinant curves for the three discretized models are shown in Figure 9
where no dominant troughs are observed. It may be said from this fact that the
single-domain method is not e!ective for concave membranes with high concavity.

4.3. L-SHAPED MEMBRANE

Figures 10(a)}(c) shows the discretized models for an L-shaped membrane. For two
models (a) and (b), the total domain is divided into two domains of which the common
boundary is discretized with three nodes. For model (c), the membrane is divided into three
domains, and each of the two common boundaries is discretized with two nodes. 19, 27 and
28 nodes including the numbers of nodes on the common boundaries are used for the
discretization of models (a), (b) and (c) respectively. Figure 11 shows the determinant curves
from which the "rst eight eigenvalues are found. Those eigenvalues are summarized in
JSV 20002872



Figure 8. Discretized models of the concavely shaped membrane for the single-domain method when models
(a)}(c) are discretized by 20, 24 and 28 boundary nodes respectively.

Figure 9. Determinant of the system matrix versus wavenumber for the concavely shaped membrane when the
single-domain method is used. (Note that no dominant trough is observed). ) ) ) ) ) ), 20 nodes; } } } } , 24 nodes;**,
28 nodes.
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Table 3, which says that: (1) only the "rst six eigenvalues are found in the case of 19 nodes;
(2) all the eigenvalues are obtained in the case of 27 nodes or 28 nodes; (3) the three-domain
method yields the most accurate eigenvalues close to those computed by FEM.
JSV 20002872



TABLE 3

Comparison of eigenvalues of the ¸-shaped membrane obtained by the two-domain method, the
three-domain method and FEM

Present method

Two domains Two domains Three domains FEM
Eigenvalues 19 nodes 27 nodes 28 nodes 1281 nodes

K
1

3)19 3)16 3)14 3)11
K

2
3)87 3)89 3)89 3)90

K
3

4)44 4)44 4)44 4)45
K

4
5)43 5)43 5)43 5)44

K
5

5)81 5)72 5)70 5)67
K

6
6)37 6)49 6)48 6)47

K
7

None 6)68 6)69 6)73
K

8
None 7)03 7)03 7)05

Figure 10. Discretized models of the L-shaped membrane for the two- and three-domain methods when models
(a)}(c) are, respectively, discretized by 19, 27 and 28 nodes, including the numbers of interior nodes.

466 S. W. KANG AND J. M. LEE
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Figure 11. Determinant of the system matrix versus wavenumber for the L-shaped membrane when the two-
and three-domain methods are used. - - - - - -, two domains (16 nodes); } } } } , two domains (24 nodes),**, three
domains (32 nodes).

TABLE 4

Comparison of eigenvalues of the multi-connected membrane obtained by the four-domain
method and FEM

Present method
FEM

Eigenvalues 28 nodes 40 nodes 52 nodes 880 nodes

K
1

3)79 3)71 3)71 3)67
K

2
3)97 4)00 4)00 3)99

K
3

4)44 4)51 4)50 4)53
K

4
5)04 5)23 5)27 5)19

K
5

5)80 5)87 5)90 5)89
K

6
6)46 6)46 6)48 6)51

K
7

6)63 7)02 7)03 7)07
K

8
6)67 7)13 7)12 7)24

K
9

None 7)23 7)23 7)39
K

10
None 7)77 7)77 7)73
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4.4. SQUARE MEMBRANE WITH A HOLE

As shown in Figure 12, three kinds of discretized models are used to obtain the
eigenvalues of a square membrane with a hole. Each of these models is divided into four
domains of which the common boundaries are discretized with two nodes. Both the inner
and outer boundaries of the membrane are assumed as "xed ones. The "xed boundaries of
models (a), (b) and (c) are, respectively, discretized with 20, 32 and 42 nodes, 28, 40 and 52
nodes including eight interior nodes on the common boundaries are used for the
discretization of models (a), (b) and (c) respectively. In Table 4, are summarized the
JSV 20002872



Figure 12. Discretized models of the multi-connected membrane for the four-domain method when models
(a)}(c) are, respectively, discretized by 28, 40 and 52 nodes, including the number of interior nodes, 8.
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eigenvalues obtained when the four-domain method is applied to the models. The
concerned determinant curves are shown in Figure 13. For model (a), only the "rst six
eigenvalues are close to the FEM results and it may be said, therefore, that more boundary
nodes are required for higher eigenvalues. For models (a) and (b), it may be seen that all the
eigenvalues are found to be close to the eigenvalues computed by FEM.

5. CONCLUSIONS

In this paper, a method, the multi-domain method, has been presented that can be used
for free vibration analysis of arbitrarily shaped membranes with high concavity or holes.
The method is more e!ective in calculating the frequency equation than the single-domain
method, owing to the fact that the order of the system matrix depends on the number of
interior nodes, not on the number of boundary nodes. Although the method is very simple
in that no integration procedure to treat interpolation functions common to FEM and
BEM is required, it gives accurate eigenvalues close to the eigenvalues obtained by FEM
(ANSYS).
JSV 20002872



Figure 13. Determinant of the system matrix versus wavenumber for the multi-connected membrane when the
four-domain method is used. - - - - -, 20 nodes; } } } }, 32 nodes; **, 44 nodes.
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APPENDIX A

Equation (37) is given by

SM11 SM12 0 SM14 0 SM16

0 SM22 SM23 SM24 SM25 0

SM31 0 SM33 0 SM35 SM36

SM41 SM42 0 SM44 0 SM46

0 SM52 SM53 SM54 SM55 0
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G
A

a
A

b
A

c
A3

a
A3

b
A3

c

H"G
0

0

0

0

0

0
H ,
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where
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